On Air



|Section2={{Chembox Properties | C=6 | H=14 | N=2 | O=2 | Appearance = | Density = | MeltingPt = | BoilingPt = | Solubility = 1.5kg/L @ 25 °C }} |Section6={{Chembox Pharmacology | ATCCode_prefix = B05 | ATCCode_suffix = XB03 }} |Section7={{Chembox Hazards | MainHazards = | FlashPt = | AutoignitionPt = }} |ImageFile1 = Lysineph.png}} Lysine (abbreviated as Lys or K), encoded by the codons AAA and AAG, is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO− form under biological conditions), and a side chain lysyl ((CH2)4NH2), classifying it as a charged (at physiological pH), aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it and thus it must be obtained from the diet. Lysine is a base, as are arginine and histidine. The ε-amino group often participates in hydrogen bonding and as a general base in catalysis. The ε-amino group (NH3+) is attached to the fifth carbon from the α-carbon, which is attached to the carboxyl (C=OOH) group. Lysine. The Biology Project, Department of Biochemistry and Molecular Biophysics, University of Arizona. Common posttranslational modifications include methylation of the ε-amino group, giving methyl-, dimethyl-, and trimethyllysine (the latter occurring in calmodulin); also acetylation, sumoylation, ubiquitination, and hydroxylationproducing the hydroxylysine in collagen and other proteins. O- Glycosylation of hydroxylysine residues in the endoplasmic reticulum or Golgi apparatus is used to mark certain proteins for secretion from the cell. In opsins like rhodopsin and the visual opsins (encoded by the genes OPN1SW, OPN1MW, and OPN1LW), retinaldehyde forms a Schiff base with a conserved lysine residue, and interaction of light with the retinylidene group causes signal transduction in color vision (See visual cycle for details). Deficiencies may cause blindness, as well as many other problems due to its ubiquitous presence in proteins.


As an essential amino acid, lysine is not synthesized in animals, hence it must be ingested as lysine or lysine-containing proteins. In plants and most bacteria, it is synthesized from aspartic acid (aspartate):
  • L-aspartate is first converted to L-aspartyl-4-phosphate by aspartokinase (or aspartate kinase). ATP is needed as an energy source for this step.
  • β-Aspartate semialdehyde dehydrogenase converts this into β-aspartyl-4-semialdehyde (or β-aspartate-4-semialdehyde). Energy from NADPH is used in this conversion.
  • 4-hydroxy-tetrahydrodipicolinate synthase adds a pyruvate group to the β-aspartyl-4-semialdehyde, and a water molecule is removed. This causes cyclization and gives rise to (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate.
  • This product is reduced to 2,3,4,5-tetrahydrodipicolinate (or Δ1-piperidine-2,6-dicarboxylate, in the figure: (S)-2,3,4,5-tetrahydropyridine-2,6-dicarboxylate) by 4-hydroxy-tetrahydrodipicolinate reductase. This reaction consumes an NADPH molecule and releases a second water molecule.
  • Tetrahydrodipicolinate N-acetyltransferase opens this ring and gives rise to N-succinyl-L-2-amino-6-oxoheptanedionate (or N-acyl-2-amino-6-oxopimelate). Two water molecules and one acyl-CoA (succinyl-CoA) enzyme are used in this reaction.
  • N-succinyl-L-2-amino-6-oxoheptanedionate is converted into N-succinyl-LL-2,6-diaminoheptanedionate (N-acyl-2,6-diaminopimelate). This reaction is catalyzed by the enzyme succinyl diaminopimelate aminotransferase. A glutamic acid molecule is used in this reaction and an oxoacid is produced as a byproduct.
  • N-succinyl-LL-2,6-diaminoheptanedionate (N-acyl-2,6-diaminopimelate)is converted into LL-2,6-diaminoheptanedionate (L,L-2,6-diaminopimelate) by succinyl diaminopimelate desuccinylase (acyldiaminopimelate deacylase). A water molecule is consumed in this reaction and a succinate is produced a byproduct.
  • LL-2,6-diaminoheptanedionate is converted by diaminopimelate epimerase into meso-2,6-diamino-heptanedionate (meso-2,6-diaminopimelate).
  • Finally, meso-2,6-diamino-heptanedionate is converted into L-lysine by diaminopimelate decarboxylase.
Enzymes involved in this biosynthesis include:
  1. Aspartokinase
  2. Aspartate-semialdehyde dehydrogenase
  3. 4-hydroxy-tetrahydrodipicolinate synthase
  4. 4-hydroxy-tetrahydrodipicolinate reductase
  5. 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase
  6. Succinyldiaminopimelate transaminase
  7. Succinyl-diaminopimelate desuccinylase
  8. Diaminopimelate epimerase
  9. Diaminopimelate decarboxylase.
It is worth noting, however, that in fungi, euglenoids and some prokaryotes lysine is synthesized via the alpha-aminoadipate pathway.


Lysine is metabolised in mammals to give acetyl-CoA, via an initial transamination with α-ketoglutarate. The bacterial degradation of lysine yields cadaverine by decarboxylation. Allysine is a derivative of lysine, used in the production of elastin and collagen. It is produced by the actions of the enzyme lysyl oxidase on lysine in the extracellular matrix and is essential in the crosslink formation that stabilizes collagen and elastin.


The Food and Nutrition Board (FNB) of the U.S. Institute of Medicine set Recommended Dietary Allowances (RDAs) for essential amino acids in 2002. For lysine, for adults 19 years and older, 38 mg/kg body weight/day.


Synthetic, racemic lysine has long been known. A practical synthesis starts from caprolactam. Industrially, L-lysine is usually manufactured by a fermentation process using Corynebacterium glutamicum; production exceeds 600,000 tons a year.{{Cite journal | pmid = 12523389 | isbn = 978-3-540-43383-5 | year = 2003 | last1 = Pfefferle | first1 = W. | last2 = Möckel | first2 = B. | last3 = Bathe | first3 = B. | last4 = Marx | first4 = A. | title = Biotechnological manufacture of lysine | volume = 79 | series = Advances in Biochemical Engineering/Biotechnology | pages = 59–112 | journal = Advances in Biochemical Engineering/Biotechnology | doi = 10.1007/3-540-45989-8_3 }} L-lysine HCl is used as a dietary supplement, providing 80.03% L-lysine. As such, 1 g of L-lysine is contained in 1.25 g of L-lysine HCl.

Dietary sources

The nutritional requirement per day, in milligrams of lysine per kilogram of body weight, is: infants (3–4 months) 103 mg/kg, children (2 years) 64 mg/kg, older children (10–12 years) 44 to 60 mg/kg, adults 12 mg/kg. For a 70 kg adult, 12 milligrams of lysine per kilogram of body weight is 0.84 grams of lysine. Recommendations for adults have been revised upwards to 30 mg/kg., page 150-152 Good sources of lysine are high-protein foods such as eggs, meat (specifically red meat, lamb, pork, and poultry), soy, beans and peas, cheese (particularly Parmesan), and certain fish (such as cod and sardines). Lysine is the limiting amino acid (the essential amino acid found in the smallest quantity in the particular foodstuff) in most cereal grains, but is plentiful in most pulses (legumes). A vegetarian or low animal protein diet can be adequate for protein, including lysine, if it includes both cereal grains and legumes, but there is no need for the two food groups to be consumed in the same meals. A food is considered to have sufficient lysine if it has at least 51 mg of lysine per gram of protein (so that the protein is 5.1% lysine). Foods containing significant proportions of lysine include:


L-Lysine plays a major role in calcium absorption; building muscle protein; recovering from surgery or sports injuries; and the body's production of hormones, enzymes, and antibodies.


Lysine can be modified through acetylation ( acetyllysine), methylation ( methyllysine), ubiquitination, sumoylation, neddylation, biotinylation, pupylation, and carboxylation, which tends to modify the function of the protein of which the modified lysine residue(s) are a part.

Clinical significance

A review cited some studies showing that lysine supplementation can decrease herpes simplex cold sore outbreaks and reduce healing time. However, an authoritative Cochrane Review published in 2015 concluded there is insufficient evidence that lysine supplementation is effective against herpes simplex virus; it has not been approved by the FDA for herpes simplex suppression. From animal studies, lysine appears to have anti-anxiety action through its effects on serotonin receptors in the intestinal tract and also may reduce anxiety through serotonin regulation in the amygdala. One human study supports the idea of a correlations between reduced lysine intake and anxiety. A population-based study in Syria included 93 families whose diet is primarily grain-based and therefore likely to be deficient in lysine. Fortification of grains with lysine was shown to reduce markers of anxiety, including cortisol levels. The authors hypothesized that anxiety reduction from lysine occurred through mechanism of serotonin alterations in the central amygdala.

Use of lysine in animal feed

Lysine production for animal feed is a major global industry, reaching in 2009 almost 700,000 tonnes for a market value of over €1.22 billion. "Norwegian granted for improving lysine production process" Lysine is an important additive to animal feed because it is a limiting amino acid when optimizing the growth of certain animals such as pigs and chickens for the production of meat. Lysine supplementation allows for the use of lower-cost plant protein ( maize, for instance, rather than soy) while maintaining high growth rates, and limiting the pollution from nitrogen excretion.
"green air" © 2007 - Ingo Malchow, Webdesign Neustrelitz
This article based upon the http://en.wikipedia.org/wiki/Lysine, the free encyclopaedia Wikipedia and is licensed under the GNU Free Documentation License.
Further informations available on the list of authors and history: http://en.wikipedia.org/w/index.php?title=Lysine&action=history
presented by: Ingo Malchow, Mirower Bogen 22, 17235 Neustrelitz, Germany